Bayesian Hypothesis Testing Theory

Objective

We provide the theoretical basis for the results described in Bayesian Approach to Hypothesis Testing for normally distributed data.

One-sample test with unknown variance

Using the Jeffreys’ prior

f(μ, σ) = σ-3

show that the posterior for μ is

Posterior for mu

where tn is the non-standardized t-distribution. and s2 is the sample variance for the data set X using division by n instead of n-1.

Proof: Setting τ = σ2, the joint posterior is

Joint posterior part 1

Joint posterior part 2

Joint posterior part 3

where

Joint posterior part 4

Thus, the posterior for μ is

Posterior mu part 1

Posterior mu part 2

Posterior mu part 3

Posterior mu part 4

Note that the pdf of the InvGamma(u, v) distribution (see Bayesian Distributions) is

Inverse Gamma pdf

which is the function inside the integral. Since this is a pdf, the integral is 1. Thus

mu posterior part 5

Note that

Side note part 1

Side note part 2

Thus

Side note part 3

Side note part 4

Side note part 5

Side note part 6

Side note part 7

where

Modified sample variance

This means that

mu posterior part 6

Thus

Posterior for mu

References

Reich, B. J., Ghosh, S. K. (2019) Bayesian statistics methods. CRC Press

Lee, P. M. (2012) Bayesian statistics an introduction. 4th Ed. Wiley
https://www.wiley.com/en-us/Bayesian+Statistics%3A+An+Introduction%2C+4th+Edition-p-9781118332573

Jordan, M. (2010) Bayesian modeling and inference. Lecture 1. Course notes
https://people.eecs.berkeley.edu/~jordan/courses/260-spring10/lectures/lecture1.pdf

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., Rubin, D. B. (2014) Bayesian data analysis, 3rd Ed. CRC Press
https://statisticalsupportandresearch.files.wordpress.com/2017/11/bayesian_data_analysis.pdf

Clyde, M. et al. (2022) An introduction to Bayesian thinking
https://statswithr.github.io/book/_main.pdf

Leave a Comment