Non-standardized t distribution

Definition 1: x has a non-standardized t distribution (aka a three-parameter t distribution), denoted xT(ν, µ, σ), when

The standardized version of this distribution, T(ν, 0, 1), is the usual t distribution T(ν).

Here, ν > 0 is the degrees of freedom (or shape parameter), µ is the location parameter and σ is the scale parameter.

The cdf of the non-standardized t distribution can be calculated in Excel by the formula

=T.DIST((x–µ)/σ, ν, TRUE)

The pdf can be expressed in Excel by   

=T.DIST((x–µ)/σ, ν, FALSE)/σ

The inverse function can be expressed in Excel by

=σ*T.INV(p, ν)+µ

Observation: Key statistical properties of the non-standardized t distribution are shown in Figure 1.

PropertiesFigure 1 – Key statistical properties

Real Statistics Functions: The Real Statistics Resource Pack provides the following functions for the three-parameter t distribution where df > 0, σ > 0,  and cum = TRUE or FALSE:

T3_DIST(x, df, μ, σ, cum) = the probability density function value f(x) for the three-parameter t distribution T(df, μ, σ)  when cum = FALSE and the corresponding cumulative distribution function F(x) when cum = TRUE.

T3_INV(p,df, μ, σ) = the value  such that T3_DIST(x, μ, σ, TRUE) = p, i.e. inverse of T3_DIST(x, df, μ, σ, TRUE).

Reference

Wikipedia (2020)  Student’s t-distribution

https://en.wikipedia.org/wiki/Student%27s_t-distributionhttps://en.wikipedia.org/wiki/Noncentral_t-distribution

Leave a Comment