Basic Concepts
Definition 1: Let -∞ ≤ a < b ≤ ∞. Then the pdf of the truncated normal distribution with mean μ and variance σ2 constrained by a ≤ x ≤ b is
where φ is the pdf of the normal distribution and Φ is the cdf of the normal distribution.
We assume that if x < a or x = -∞ then φ(x, µ, σ) = 0 and Φ(x, µ, σ) = 0. If x > b or x = ∞ then φ(x, µ, σ) = 0 and Φ(x, µ, σ) = 1.
Thus, in Excel, if a and b are finite then
f(x) = NORM.DIST(x, µ, σ, FALSE)/(NORM.DIST(b, µ, σ) – NORM.DIST(a, µ, σ))
The cdf of this distribution is
The inverse distribution function is
Properties
We now present some key statistical properties, but first we define
Here, we assume that if b = ∞ then Φ(b, µ, σ) = 1 and (b–µ)kφ(b, µ, σ) = 0. Similarly, if a = -∞ then Φ(a, µ, σ) = 0 and (a–µ)kφ(a, µ, σ) = 0.
Worksheet Functions
Real Statistics Functions: The Real Statistics Resource Pack provides the following functions.
TNORM_DIST(x, μ, σ, cum, a, b) = the probability density function value f(x) for the truncated normal distribution N(μ, σ2, a, b) when cum = FALSE and the corresponding cumulative distribution function F(x) when cum = TRUE.
TNORM_INV(p, μ, σ, a, b) = the value x such that TNORM_DIST(x, μ, σ, TRUE, a, b) = p, i.e. inverse of TNORM_DIST(x, μ, σ, TRUE, a, b).
TNORM_PARAM(μ, σ, a, b, lab): array function that returns a column array with the following parameters for the truncated normal distribution N(μ, σ2, a, b): mean, median, mode, variance, skewness, kurtosis.
If a is omitted then it defaults to -∞, while if b is omitted then it defaults to ∞. If lab = TRUE (default FALSE), then an extra column of labels is appended to the output.
Note that you can use the following Excel formula instead of TNORM_INV(p,m,s).
=NORM.INV(p*(NORM.DIST(b,m,s)-NORM.DIST(a,m,s))+NORM.DIST(a,m,s),m,s)
References
NtRAND (2020) Truncated normal distribution
https://www.ntrand.com/truncated-normal-distribution/
Burkardt, J (2014) The truncated normal distribution. Florida State University
https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
Cha, J (2015) Re-Establishing the theoretical foundations of a truncated normal distribution: standardization statistical inference, and convolution. Dissertation at Clemson University
https://tigerprints.clemson.edu/all_dissertations/1793
IS THERE A POSSIBILITY TO IMPLEMENT THE GHK ALGORITHM TO ESTIMATE MULTIVARIATE PROBABILITIES OF A MULTIVARIATE NORMAL FUNCTION?
Hello Antony,
Is the GHK algorithm a substitute for Gentz’s algorithm?
Charles
It is used to approximate multiple integrals.
reference: econometrics analysis, william greene , 7ma edicion. pagina 667
Hello Antony,
I found the GHK discussion on page 627, not 667. I will look into the implementation.
Charles
1) Regarding Gentz’s algorithm, this algorithm produces correct results for r greater than or equal to 0.925. Apparently the algorithm code was incorrectly transferred to the REAL statistics. Could you check the actual statistics code for rho >=0.925.?
2) FOR THE FUNCTION Real Statistics Support for KDE USING KERNEL Epanechnikov I GET NEGATIVE VALUES FOR THE DENSITY FUNCTION.
Hello Antony,
I have now found the bug that caused the incorrect values for the KDE (your point 2). This correction will be available in Rel 9.1, which I hope to make available this week.
I thought that I had corrected the Gentz alogorithm, but apparently not. I will look into it shortly.
Charles
Antony,
I am using the version of the Genz algorithm from
https://www.math.wsu.edu/faculty/genz/software/fort77/tvpack.f
I think that corrects for r >= -.925.
There is a copy error (+ replaced by -) in one statement that I will correct in Rel 9.1. Hopefully this fixes the problem that you have identified.
Please let me know if there is a later version of the algorithm.
Charles
Hello Antony,
I have implemented the GHK algorithm and will add it to Rel 9.1.
Charles
thanks
adjunt reference:
https://www.math.wsu.edu/faculty/genz/papers/mvn.pdf
Hi Antony,
I am issuing Rel 9.1 in a few minutes. Hopefully, this release corrects the problem that you have observed.
Charles
THANKS DR. Greetings from Peru